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Fig.1: Human-object interaction (HOI) detection using dual relation
graph. Predicting each HOI in isolation is ambiguous due to the lack of context.
In this work, we propose to leverage a dual relation graph. For each human node
h, we obtain a human-centric subgraph where all object nodes are connected to
h. Similarly, we can obtain an object-centric subgraph for each object node o.
The human subgraph helps to adjust single HOI'’s prediction based on the same
person’s other HOIs. For example, knowing a person is wearing a
and hitting a suggests that the person may be holding a
baseball bat. Similarly, the object subgraph helps to refine the HOI’s prediction
based on other HOIs associated with the same object. For example, knowing a
baseball bat is held by a person lowers the chance that it is held by another
. Our method exploits such cues for improving HOI detection.

Abstract. We tackle the challenging problem of human-object interac-
tion (HOI) detection. Existing methods either recognize the interaction
of each human-object pair in isolation or perform joint inference based
on complex appearance-based features. In this paper, we leverage an
abstract spatial-semantic representation to describe each human-object
pair and aggregate the contextual information of the scene via a dual
relation graph (one human-centric and one object-centric). Our proposed
dual relation graph effectively captures discriminative cues from the scene
to resolve ambiguity from local predictions. Our model is conceptually
simple and leads to favorable results compared to the state-of-the-art
HOI detection algorithms on two large-scale benchmark datasets.

1 Introduction

Detecting individual persons and objects in isolation often does not provide
sufficient information for understanding complex human activities. Moving beyond
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detecting /recognizing individual objects, we aim to detect persons, objects, and
recognize their interaction relationships (if any) in the scene. This task, known as
human-object interaction (HOI) detection, can produce rich semantic information
with visual grounding.

State-of-the-art HOI detection methods often use appearance features from
the detected human/object instances as well as their relative spatial layout for
predicting the interaction relationships [1,3,9,12, 13, 14,21,24, 25,32 /40,41,51].
These methods, however, often predict the interaction relationship between each
human-object pair in isolation, thereby ignoring the contextual information
in the scene. In light of this, several methods have been proposed to capture
the contextual cues through iterative message passing [34,13] or attentional
graph convolutional networks [44]. However, existing approaches rely on complex
appearance-based features to encode the human-object relation (e.g., deep features
extracted from a union of two boxes) and do not exploit the informative spatial
cues. In addition, the contexts are aggregated via a densely connected graph
(where the nodes represent all the detected objects).

In this paper, we first propose to use spatial-semantic representation to
describe each human-object pair. Specifically, our spatial-semantic representation
encodes (1) the relative spatial layout between a person and an object and (2)
the semantic word embedding of the object category. Using spatial-semantic
representation for HOI prediction has two main advantages: First, it is invariant
to complex appearance variations. Second, it enables knowledge transfer among
object classes and helps with rare interaction during training and inference.

While such representations are informative, predicting HOI in isolation fails to
leverage the contextual cues. In the example of Figure 1, a model might struggle
to recognize that the person (in the red box) is hitting the baseball, by using
only the spatial-semantic features from this particular human-object pair. Such
ambiguity, however, may be alleviated if given the relation among different HOIs
from the same person, e.g., this person is wearing a baseball helmet and holding
a baseball bat. Similarly, we can exploit the relations among different HOIs from
the same object. For example, a model may recognize both persons are holding
the same baseball bat when making prediction independently. Knowing that the
person (red box) is more likely to hold the baseball bat reduces the probability
of another person (blue box) holding the same baseball bat. Inspired by these
observations, we construct a human-centric and an object-centric HOI subgraph
and apply attentional graph convolution to encode and aggregate the contextual
information. We refer to our method as Dual Relation Graph (DRG).

Our contributions.

— We propose Dual Relation Graph, an effective method to capture and aggre-
gate contextual cues for improving HOI predictions.

— We demonstrate that using the proposed spatial-semantic representation alone
(without using appearance features) can achieve competitive performance
compared to the state-of-the-art.

— We conduct extensive ablation study of our model, identifying contributions
from individual components and exploring different model design choices.
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Fig.2: Leveraging contextual information. Given object detections in the
scene (a), existing HOI detection algorithms only perform independent prediction
for each Human-object pair (b), ignoring the rich contextual cues. Recent methods
in visual relationship detection (or scene graph generation) perform joint inference
on a densely connected graph (c). While being general, the large number of
relations among the dense connections makes the learning and inference on such
a graph challenging. In contrast, our work leverages the human/object-centric
graph to focus only on relevant contexts for improved HOI detection (d).

— We achieve competitive results compared with the state-of-the-art on the
VCOCO and HICO-DET datasets.

2 Related Work

Human-object interaction detection. The task of human-object interaction
detection aims to localize persons, object instances, as well as recognize the
interactions (if any) between each pair of a person and an object. State-of-the-art
HOI detection algorithms generally rely on two types of visual cues: (1) appearance
features of the detected persons and objects (e.g., using the ROI pooling features
extracted from a ConvNet) and (2) the spatial relationship between each human-
object pair (e.g., using the bounding box transformation between the agent and
the object [12,13,14], a two-channel interaction pattern [3,9], or modeling the
mutual contexts of human pose and object [14,24,46]). Recent advances focus on
incorporating contexts to resolve potential ambiguity in interaction prediction
based on independent human-object pairs, including pairwise body-parts [7,40]
or object-parts [51], instance-centric attention [9,41], or message passing on a
graph [34]. Our work shares similar spirits with these recent efforts as we also aim
to capture contextual cues. The key difference lies in that the above approaches
learn to aggregate contextual information from the other objects, body parts, or
the scene background, while our method exploits relations among different HOIs
to refine the predictions.

Inspired by the design of two-stage object detectors [35], recent works also
show that filtering out candidate pairs with no relations using a relation proposal
network [44] or an interactiveness network [24] improves the performance. Our
method does not train an additional network for pruning unlikely relations. We
believe that incorporating such a strategy may lead to further improvement.

Recent advances in HOI detection focus on tackling the long-tailed distribu-
tions of HOI classes. Examples include transferring knowledge from seen categories
to unseen ones by an analogy transformation [31], performing data augmentation
of semantically similar objects [1], or leveraging external knowledge graph [20].
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While we do not explicitly address rare HOI classes, our method shows a small
performance gap between rare and non-rare classes. We attribute this to the use
of our abstract spatial-semantic representation.

Visual relationship detection. Many recent efforts have been devoted to de-
tecting visual relationships [2,5, 17,22 31,50,52]. Unlike object detection, the
number of relationship classes can be prohibitively large due to the composition-
ality of object pairs, predicates, and limited data samples. To overcome this issue,
some forms of language prior have been applied [27,33]. Our focus in this work
is on one particular class of relationship: human-centric interactions. Compared
with other object classes, the possible interactions (the predicate) between a
person and objects are significantly more fine-grained.

Scene graph. A scene graph is a graphical structure representation of an
image where objects are represented as nodes, and the relationships between
objects are represented as edges [30,43,44,45,49]. As the scene graph captures
richer information beyond categorizing scene types or localizing object instances,
it has been successfully applied to image retrieval [19], captioning [23], and
generation [18]. Recent advances in scene graph generation leverage the idea
of iterative message passing to capture contextual cues and produce a holistic
interpretation of the scene [34, 43,44, 49]. Our work also exploits contextual
information but has the following distinctions: (1) Unlike existing methods
that apply message passing to update appearance features (e.g.7 the appearance
feature extracted from the union of human-object pair) at each step, we use an
abstract spatial-semantic representation with an explicit encoding of relative
spatial layout. (2) In contrast to prior works that use a single densely connected
graph structure where edges connecting all possible object pairs, we operate
on human-centric and object-centric subgraphs to focus on relevant contextual
information specifically for HOI. Figure 2 highlights the differences between
methods that capture contextual cues.

The mechanisms for dynamically capturing contextual cues for resolving
ambiguity in local predictions have also been successfully applied to sequence
prediction [38], object detection [16], action recognition [10,37,42], and HOI
detection [9]. Our dual relation graph shares a similar high-level idea with
these approaches but with a focus on exploiting the contexts of spatial-semantic
representations.

Visual abstraction. The use of visual abstraction helps direct the focus to
study the semantics of an image [53]. Visual abstraction has also been applied to
learn common sense [39], forecasting object dynamics [38], and visual question
answering [47]. Our work leverages the contexts of an abstract representation
between human-object pairs for detecting HOIs.

Spatial-semantic representation. Spatial-semantic representation has also
been applied in other problem domains such as image search [28], multi-class
object detection [0], and image captioning [48].
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Fig.3: Overview of the proposed model. Our network consists of three
streams (human, object, and spatial-semantic). The human and object stream
leverage the appearance feature f;, and f,. The spatial-semantic stream makes a
prediction from the abstract spatial-semantic feature x. We apply our proposed
dual relation graph (DRG) to this stream. The three streams predict the scores

Shy So» Sepm and 85,0, which are fused to form final prediction.

3 Method

In this section, we present our network for HOI detection (Figure 3). We start with
an overview of our network (Section 3.1). We then introduce the spatial-semantic
representation (Section 3.2) and describe how we can leverage the proposed Dual
Relation Graph (DRG) to propagate contextual information (Section 3.3). Finally,
we outline our inference (Section 3.4) and the training procedure (Section 3.5).

3.1 Algorithm overview

Figure 3 provides a high-level overview of our HOI detection network. We
decompose the HOI detection problem into two steps: (1) object detection and
(2) HOI prediction. Following Gao et al. [9], we first apply an off-the-shelf object
detector Faster R-CNN [35] to detect all the human/object instances in an image.
We denote H as the set of human detections, and O as the set of object detections.
Note that “person” is also an object category. We denote b, as the detected
bounding box for a person and b, for an object instance. We use s, and s, to
denote the confidence scores produced by the object detector for a detected person
bp and an object b,, respectively. Given the detected bounding boxes b, and
b,, we first extract the ROI pooled features and pass them into the human and
object stream. We then pass the detected bounding boxes as well as the object
category information to the spatial-semantic stream. We apply the proposed Dual
Relation Graph (DRG) in the spatial-semantic stream. Lastly, we fuse the action
scores from the three streams (human, object, and spatial-semantic) to produce
our final predictions.

Human and object stream. Our human/object streams follow the standard
object detection pipeline for feature extraction and classification. For each ROI
pooled human /object feature, we pass it into a one-layer MLP followed by global
average pooling and obtain the human appearance feature f;, and the object
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Fig.4: HOI detection using Dual Relation Graph. (a) The input to our
model are the detected objects in the given image. We denote H as the set of
human detections, and O as the set of object detections. (b) We construct a
relation graph from the detections where the two sets are H and Q. (c) For each
human node h in H, we obtain a human-centric sub-graph where all nodes in O
are connected to h. Similarly, we can obtain an object-centric sub-graph for each
object node o in @. Note that “person” is also an object category. For simplicity,
we do not show it in the figure. (d) In order to predict HOIs, we need to construct
the HOI graph explicitly. Taking human sub-graph for example, we insert an
HOI node x between human node h and object node o. We then connect all the
HOI nodes and obtain the human-centric HOI sub-graph and the object-centric
HOI sub-graph. (e) We iteratively update the HOI node feature via a trainable
attentional graph convolutional network. This helps to aggregate the contextual
information. (f) We fuse the scores from both sub-graphs and make the final HOI
prediction.

appearance feature f,. We then apply a standard classification layer to obtain
the A-dim action scores s (from human stream) and s? (from object stream).

Spatial-semantic stream. Our inputs to this stream are the spatial-semantic
features (described in Section 3.2). In an image, we pair all the detected persons
in H with all the objects in O, and extract spatial-semantic features for each
human-object pair. We then pass all the features into our proposed Dual Relation
Graph (Section 3.3) to aggregate the contextual information and produce updated
features for each human-object pair. Our dual relation graph consists of a human-
centric subgraph and an object-centric subgraph. These two subgraphs produce
the action scores, s5,; and sg .

3.2 Spatial-semantic representation

We leverage the abstract visual representation of human-object pair for HOI
prediction. The visual abstraction of a human-object pair allows us to con-
struct representations that are invariant to intra-class appearance variations. In
the context of human-object interaction, we consider the two important visual
abstractions: (1) spatial relationship and (2) object category. !

L Other types of abstracted representation such as the pose of the person, the attribute
of the person/object can also be incorporated into our formulation. We leave this to
future work.
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Capturing pairwise spatial relationship. Following [3, 9], we use the two-
channel binary image representation to model the spatial relationship between a
person and an object. To do so, we take the union of the two bounding boxes
as a reference and rescale it to a fixed size. A binary image with two channels
can then be created by filling value ones within the human bounding box in the
first channel and filling value ones within the object bounding box in the second
channel. The remaining locations are then filled with value 0. We then feed these
two-channel binary images into a simple two-layer ConvNet to extract the spatial
relation feature.

Capturing object semantics. We find that using spatial features by itself leads
to poor results in predicting the interaction. To address this issue, we augment
the spatial feature with the word embedding of each object’s category, vector(o),
using fastText [29]. Let x;; denote the spatial-semantic feature between the i-th
person and the j-th object. We construct x;; € R by concatenating (1) the
spatial feature and (2) the 300-dimensional word embedding vector.

3.3 Dual Relation Graph

Here, we introduce the Dual Relation Graph for aggregating the spatial-semantic
features. Figure 4 illustrates the overall process.

Relation graph. Given the object detection results, i.e., instances in H and O,
we construct a relation graph (Figure 4b). There are two types of nodes in this
graph, H (human) and O (object). For each node h in H, we connect it to all the
other nodes in Q. Similarly, for each node o in @, we connect it to all nodes in H.

Human-centric subgraph and object-centric subgraph. Unlike previous
methods [34,44], we do not use the densely connected graphs. To exploit the
relation among different HOIs performed by the same person, we construct a
human-centric subgraph. Similarly, we construct an object-centric subgraph for
the HOIs performed on the same object (Figure 4c). So far, each node stands for
an object instance detection. To explicitly represent the HOI, we insert an HOI
node z;; between each paired human node h; and object node o;. We then connect
all the HOI nodes and obtain human-centric HOI subgraph and object-centric
HOI subgraph (Figure 4d). We use the before mentioned spatial-semantic feature
x;; to encode each HOI node between the i-th person and the j-th object.

Contextual feature aggregation. With these two HOI subgraphs, we follow
a similar procedure for propagating and aggregating features as in relation
network [16], non-local neural network [12], and attentional graph convolutional
network [44].

Human-centric HOI subgraph. To update node z;;, we aggregate all the spatial-
semantic feature of the nodes involving the same i-th person {x;;/|j" € N(j)}.
The feature aggregation can be written as:

i =o | x) Y ey, (1)
J'EN ()
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where W € R5708%5708 ig o Jearned linear transformation that projects features
into the embedding space, a;;- is a learned attention weight.
We can rewrite this equation compactly with matrix operation:

XE;-H) =0 (WX(l)aj) (2)
T

ujjr = (qugé-%) (kaz(-é-)) /\/di, (3)

a; = softmax(u;), (4)

where W,, W), € R1924X5708 are linear projections that project feature into a
query and a key embedding space. Following [38], we calculate the attention
weights using scaled dot-product, normalized by +/dj where dj, = 1024 is the
dimension of the key embedding space. We do not directly use the aggregated
feature o (WX(l)aj) as our output updated feature. Instead, we add it back to

the original spatial-semantic feature xl(é). We then pass the addition through a
LayerNorm to get the final aggregated feature on the human-centric subgraph.

xz(-é.ﬂ) = LayerNorm (xgé) +o (WX(l)aj)) . (5)

The linear transformation W does not change the dimension of the input
feature, thus the output xz(.l.ﬂ) has the same size as input xl(.;.). As a result, we
can perform several iterations of feature aggregation (Figure 4e). We explore the

effectiveness of more iteration in Table 3(a).

Object-centric HOI subgraph. Similarly, to update node z;;, we aggregate
all the spatial-semantic feature of the nodes which involved the same object
{xy;|i" € N(i)}. The two subgraphs have independent weights and aggregate
contextual information independently.

3.4 Inference

For each human-object bounding box pair (b, b,) in image I, we predict the score

h.o for each action a € {1,---, A}, where A denotes the total number of possible
actions. The final score S¢  depends on (1) the confidence for the individual
object detections (s;, and s,), (2) the prediction score from the appearance of the
person s¢ and the object s, and (3) the prediction score based on the aggregated
spatial-semantic feature, using human-centric and object-centric subgraph, SepH

and s§,. We compute the HOI score S}, for the human-object pair (bp, bo) as

a a .a .a a
Sh,o = Sh S0 Sp " S0 " SspH * SspO (6>

Note that we are not able to obtain the action scores using object s or the
spatial-semantic stream for some classes of actions as they do not involve any
objects (e.g., walk, smile). For those cases, we use only the score s¢ from the
human stream. For those actions, our final scores are s, - sf.
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Fig. 5: Sample HOI detections on V-COCO (first row) and HICO-DET
(second row) test set.

3.5 Training

HOI detection is a multi-label classification problem because a person can simul-
taneously perform different actions on different objects, e.g., sitting on a chair
and reading a book. Thus, we minimize the cross-entropy loss for each individual
action class between the ground-truth action label and the score produced from
each stream. The total loss is the summation of the loss at each stream.

4 Experimental Results

In this section, we first outline our experimental setup, including datasets, metrics,
and implementation details. We then report the quantitative results on two
large-scale HOI benchmark datasets and compare the performance with the state-
of-the-art HOI detection algorithms. Next, we show sample visual results on HOI
detection. We conduct a detailed ablation study to quantify the contributions
from individual components and validate our design choices. More results can
be found in the supplementary material. We will make the source code and
pre-trained models publicly available to foster future research.

4.1 Experimental setup

Datasets. V-COCO dataset [13] is constructed by augmenting the COCO
dataset [26] with additional human-object interaction annotations. Each person
is annotated with a binary label vector for 29 different action categories (five
of them do not involve associated objects). HICO-DET [4] is a larger dataset
containing 600 HOI categories over 80 object categories (same as [20]) with
more than 150K annotated instances of human-object pairs. For applying our
method on the HICO-DET dataset, we disentangle the 600 HOI categories into
117 object-agnostic action categories and train our network over these 117 action
categories. At test time, we then combine the predicted action and the detected
object and convert them back to the original 600 HOI classes. Note that the
evaluation for the HICO-DET dataset remains the same.

Evaluation metrics. To evaluate the performance of our model, we adopt
the commonly used role mean average precision (role mAP) [13] for both V-
COCO and HICO datasets. The goal is to detect and correctly predict the (
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Table 1: Comparison with the state-of-the-art on the V-COCO test set.
The best performance is in bold and the second best is underscored. Character
* indicates that the method uses both VCOCO and HICO-DET training data.
“S-S only” shows the performance of our spatial-semantic stream.

Method Use human pose Feature backbone‘APmle
VSRL [13] - ResNet-50-FPN | 31.8
InteractNet [12] - ResNet-50-FPN | 40.0
BAR-CNN [21] - Inception-ResNet | 41.1
GPNN [34] - ResNet-101 44.0
iCAN [9] - ResNet-50 45.3
Wang et al. [11] - ResNet-50 47.3
RPNN [51] v ResNet-50 47.5
RPTQCD* [ ] v ResNet-50 48.7
PMFNet [10] - ResNet-50-FPN | 48.6
PMFNet [10] v ResNet-50-FPN | 52.0
Ours (S-S only) - - 47.1
Ours - ResNet-50-FPN | 51.0

human, verb, object ) triplet. We consider a triplet as true positive if and only
if it localizes the human and object accurately (i.e., with IoUs > 0.5 w.r.t the
ground truth annotations) and predicts the action correctly.

Implementation details. We build our network with the publicly available
PyTorch framework. Following Gao et al. [9], we use the Detectron [11] with a
feature backbone of ResNet-50 to generate human and object bounding boxes.
For VCOCO, we conduct an ablation study on the validation split to determine
the best threshold. We keep the detected human boxes with scores s higher
than 0.8 and object boxes with scores s, higher than 0.1. For HICO-DET, since
there is no validation split available, we follow the setting in [32]. We use the
score threshold 0.6 to filter out unreliable human boxes and threshold 0.4 to filter
out unconfident object boxes. To augment the training data, we apply random
spatial jitterring to the human and object bounding boxes and ensure that the
IOU with the ground truth bounding box is greater than 0.7. We pair all the
detected human and objects, and regard those who are not ground truth as
negative training examples. We keep the negative to positive ratio to three.

We initialize our appearance feature backbone with the COCO pre-trained
weight from Mask R-CNN [15]. We perform two iterations of feature aggregation
on both human-centric and object-centric subgraphs. We train the three streams
(human appearance, object appearance, and spatial-semantic) using the V-COCO
train set. We use early stopping criteria by monitoring the validation loss. We
train our network with a learning rate of 0.0025, a weight decay of 0.0001, and
a momentum of 0.9 on both the V-COCO train set and HICO-DET train set.
Training our network takes 14 hours on a single NVIDIA P100 GPU on V-COCO
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Table 2: Comparison with the state-of-the-art on HICO-DET test set.
The best performance is in bold and the second best is underscored. Character
* indicates that the method uses both VCOCO and HICO-DET training data.
For the object detector, “COCQO” means that the detector is trained on COCOQO,
while “HICO-DET” means that the detector is first pre-trained on COCO and
then further fine-tuned on HICO-DET.

Default Known Object
Method Detector Use human pose Feature backbone Full Rare Non Rare Full Rare Non Rare
Shen et al. [36]  COCO - VGG-19 6.46 424 712 - - -
HO-RCNN |[3] COCO - CaffeNet 7.81 5.37 8.54 10.41 8.94 10.85
InteractNet [12] COCO - ResNet-50-FPN 994 7.16  10.77 - - -
GPNN [31] COCO - ResNet-101 13.11 9.34 14.23 - - -
iCAN [9] COCO - ResNet-50 14.84 1045 16.15 16.26 11.33 17.73
Wang et al. [11]] COCO - ResNet-50 16.24 11.16 17.75  17.73 12.78 19.21
Bansal et al. [I] COCO - ResNet-101 16.96 11.73  18.52 - - -
RPpCp [21] COCO v ResNet-50 17.03 1342 1811 19.17 1551 20.26
RPpyCp™ [24] COCO v ResNet-50 17.22 13.51 1832  19.38 15.38 20.57
no-frills [14] COCO v ResNet-152 17.18 12.17  18.68 - - -
RPNN [51] COCO v ResNet-50 17.35 12.78 18.71 - - -
PMFNet [10] COCO - ResNet-50-FPN  14.92 11.42 1596  18.83 15.30 19.89
PMFNet [10] COCO v ResNet-50-FPN  17.46 15.65 18.00  20.34 17.47 21.20
Peyre et al. [32]  COCO - ResNet-50-FPN  19.40 14.63  20.87 - - -
Ours (S-S only) COCO - - 1245 9.84  13.23  15.77 12.76  16.66
Ours COCO - ResNet-50-FPN  19.26 17.74 19.71  23.40 21.75 23.89
Bansal et al. [1] HICO-DET - ResNet-101 21.96 16.43 23.62 - - -
Ours HICO-DET - ResNet-50-FPN  24.53 19.47 26.04 27.98 23.11 29.43

and 24 hours on HICO-DET. At test time, our model runs at 3.3 fps for VCOCO
and 5 fps for HICO-DET.

4.2 Quantitative evaluation

We report the main quantitative results in terms of AP, on V-COCO in Table 1
and HICO-DET in Table 2. For the V-COCO dataset, our method compares
favorably against state-of-the-art algorithms [24,41,51] except PMFNet [40],
which uses human pose as an additional feature. Since pose estimation required
additional training data (with pose annotations), we expect to see performance
gain using human pose. PMFNet [40] also reports the AP, without human
pose, which is 2.4 mAP lower to our method. We also note that the spatial-
semantic stream alone without using any visual features achieves a competitive
performance (47.1 mAP) when compared with the state-of-the-art. This highlights
the effectiveness of the abstract spatial-semantic representation and contextual
information. Compared with methods that perform joint inference on densely
connected graph [34], our approach produces significant performance gains.

For the HICO-DET dataset, our method also achieves competitive performance
with state-of-the-art methods [14, 24, 31, 40]. Our method achieves the best
performance for the rare categories, showing that our method handles the long-
tailed distributions of HOI classes well.
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Fig. 6: More iteration of feature aggregation leads to a more accurate
prediction. The human-centric and object-centric subgraph in the spatial-
semantic stream propagates contextual information to produce increasingly
accurate HOI predictions.

We note that the current best performing model [1] uses an object detector
which is fine-tuned on HICO-DET train set using the annotated object bounding
boxes. For a fair comparison, we also fine-tune our object detector on HICO-DET
and report our result. Note that we do not re-train our model, but only replace
the object detector at the test time.

Here, the large performance gain from fine-tuning the object detector may not
reflect the progress on the HOI detection task. This is because the objects (and
the associated HOIs) in the HICO-DET dataset are not fully annotated. Using a
fine-tuned object detector can thus improve the HOI detection performance by
exploiting such annotation biases.

4.3 Qualitative evaluation

HOI detection results. Here we show sample results on the V-COCO dataset
and the HICO-DET dataset in Figure 5. We highlight the detected person and
the associated object with red and green bounding boxes, respectively.

Visualizing the effect of the Dual Relation Graph. In Figure 6, we show
the effectiveness of the proposed DRG. In the first two rows, we show that by
aggregating contextual information, using the human-centric subgraph produces
more accurate HOI predictions. Another example in the top right image indicates
that the human-centric subgraph can also suppress the scores for unrelated
human-object pairs. In the bottom two rows, we show four examples of how
the object-centric subgraph propagates contextual information in each step to
produce increasingly more accurate HOI predictions. For instance, the bottom



DRG: Dual Relation Graph for Human-Object Interaction Detection 13

Table 3: Ablation study on the V-COCO wval set. We show the role mAP
AProle-
(a) More message passing iters. (b) Feature used in DRG
‘mAP
App. feature (entire image) 35.69
App. feature (H-O union box) |46.93

iter. ‘H graph‘O graph‘H + 0
O-iter.| 48.78 | 47.47 | 50.14
1-iter.| 48.83 | 47.35 | 50.74

. Word2vec embedding 37.36
2-iter| 5020 | 47.87 |51.37 Spatial-semantic feature (ours)|51.37
(c) Different subgraph (d) Effectiveness of O subgraph
H graph O graph‘mAP ‘ 1-3 46 74+ all
- - 50.14 H graph 57.89 52.77 50.96 51.10
v - 51.10 H graph + O graph|58.28 53.75 51.06 51.37
- v 50.78 Margin +0.39 +0.98 +0.10 4-0.27
v v [51.37 % of testing images| 68% 12% 20% 100%

right images show that for a person and an object without interaction, our model
learns to suppress the predicted score by learning from the relationship of other
HOT pairs associated with this particular object (laptop). In this example, the
model starts with predicting a high score for the woman working on a computer.
By learning from the relationship between the man and the computer, our model
suppresses the score in each iteration.

4.4 Ablation study

We examine several design choices using the V-COCO wal set.

More iteration of feature aggregation. Table 3(a) shows the performance
using different iterations of feature aggregation. For either human-centric or object-
centric subgraph, using more iterations of feature aggregation improves the overall
performance. This highlights the advantages of exploiting contextual information
among different HOIs. Performing feature aggregation on both subgraphs further
improves the final performance.

Effectiveness of each subgraph. To validate the effectiveness of the proposed
subgraph, we show different variants of our model in Table 3(c). Adding only
human-centric subgraph improves upon the baseline model (without using any
subgraph) by 0.96 absolute mAP, while adding only object-centric subgraph gives
a 0.64 absolute mAP. More importantly, our results show that the performance
gain of each subgraph is complementary to each other. To further validate the
effectiveness of the object-centric subgraph, we show in Table 3(d) the breakdown
of Table 3(c) in terms of the number of persons in the scene. The object-centric
subgraph is less effective for cases with few people. For example, if there is only
one person, the object-centric subgraph has no effect. For images with a moderate
amount of persons (4-6), however, our object-centric subgraph shows a clear
0.98 mAP gain. As the number of persons getting larger (7+), the object-centric
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Incorrect object Incorrect action

Fig. 7: Failure cases of our method.

subgraph shows a relatively smaller improvement due to clutter. Among the 2,867
testing images, 68% of them have only 1-3 persons. As a result, we do not see
significant overall improvement.

Spatial-semantic representation. To demonstrate the advantage and effec-
tiveness of the use of the abstract spatial-semantic representation, we show in
Table 3(b) the comparison with alternative features, e.g., word2vec (as used in [27])
or appearance-based features. By using our spatial-semantic representation in
the dual relation graph, we achieve 51.37 mAP. This shows a clear margin over
the other alternative options, highlighting the contribution of spatial-semantic
representation.

4.5 Limitations

While we demonstrated improved performance, our model is far from perfect.
Below, we discuss two main limitations of our approach, with examples in Figure 7.

First, we leverage the off-the-shelf object detector to detect object instances
in an image. The object detection does not benefit from the rich contextual cues
captured by our method. We believe that a joint end-to-end training approach
may help reduce this type of errors.

Second, our model may be confused by plausible spatial configuration and
predicts incorrect action. In the third image, our model predicts that the person
is sitting on a bench even though our model confidently predicts this person is
standing and catching a Frisbee. Capturing the statistics of co-occurring actions
may resolve such mistakes.

5 Conclusions

In this paper, we present a Dual Relation Graph network for HOI detection.
Our core idea is to exploit the global object layout as contextual cues and use a
human-centric as well as an object-centric subgraph to propagate and integrate
rich relations among individual HOIs. We validate the efficacy of our approach on
two large-scale HOI benchmark datasets and show our model achieves a sizable
performance boost over the state-of-the-art algorithms. We also find that using
the abstract spatial-semantic representation alone (i.e., without the appearance
features extracted from a deep CNN) yields competitive accuracy, demonstrating
a promising path of activity understanding through visual abstraction.
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